Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We present a compilation scheme for conditional quantumgates. Our scheme compiles amulti-qubit conditional to a linear number of two-qubit conditionals. This can be done straightforwardly with helper qubits, but we show how to do it without using helper qubits and with much fewer gates than in previous work. Specifically, our scheme requires 1/3 as many gates as the previous best scheme without using helper qubits, which is essential for practical use. Our experiments show that several quantum-circuit optimizers have little impact on the compiled code from the previous best scheme, confirming the need for our new scheme. Our experiments with Grover’s algorithm and quantum walk also show that our scheme has a major impact on the reliability of the compiled code.more » « less
-
Abstract Existing quantum compilers focus on mapping a logical quantum circuit to a quantum device and its native quantum gates. Only simple circuit identities are used to optimize the quantum circuit during the compilation process. This approach misses more complex circuit identities, which could be used to optimize the quantum circuit further. We propose Quanto, the first quantum optimizer that automatically generates circuit identities. Quanto takes as input a gate set and generates provably correct circuit identities for the gate set. Quanto’s automatic generation of circuit identities includes single-qubit and two-qubit gates, which leads to a new database of circuit identities, some of which are novel to the best of our knowledge. In addition to the generation of new circuit identities, Quanto’s optimizer applies such circuit identities to quantum circuits and finds optimized quantum circuits that have not been discovered by other quantum compilers, including IBM Qiskit and Cambridge Quantum Computing Tket. Quanto’s database of circuit identities could be applied to improve existing quantum compilers and Quanto can be used to generate identity databases for new gate sets.more » « less
-
Resource leaks are a common and elusive source of bugs that can result in crashes and security vulnerabilities. The most effective technique to identify such leaks during development is static analysis. However, empirical studies show that in addition to leak warnings, developers often need help in the form of automated fix suggestions to correctly repair such leaks. The only existing tool that can suggest resource-leak fixes is the general-purpose tool Footpatch. Footpatch, however, performs poorly at this task; it generates fixes for only 6% of the leaks, out of which only 27% are correct. In this paper, we introduce RLFixer, a specialized repair tool that generates high-quality fixes for resource leaks identified by any resource-leak detector. A major challenge for RLFixer is that the most general version of the resource-leak repair problem is at least as hard as compile-time object deallocation, a well-known hard problem for compilers. RLFixer tackles this issue by separating the resource-leaks that are infeasible for a compile-time tool to fix from those that are feasible to fix. RLFixer achieves this separation by using a new data-flow analysis of resource objects to classify how they escape the context of their methods. The same analysis also enables RLFixer to generate correct repairs for the feasible-to-fix leaks. RLFixer is demand-driven and hence only analyzes statements relevant to the leak, thereby keeping overhead low. We evaluated RLFixer by applying it to warnings generated by five popular Java resource-leak detectors. We show that, on average, RLFixer generates repairs for 66% of their warnings, out of which 95% are correct. It has an average repair time of 14 secondsmore » « less
-
Long analysis times are a key bottleneck for the widespread adoption of whole-program static analysis tools. Fortunately, however, a user is often only interested in finding errors in the application code, which constitutes a small fraction of the whole program. Current application-focused analysis tools overapproximate the effect of the library and hence reduce the precision of the analysis results. However, empirical studies have shown that users have high expectations on precision and will ignore tool results that don't meet these expectations. In this paper, we introduce the first tool QueryMax that significantly speeds up an application code analysis without dropping any precision. QueryMax acts as a pre-processor to an existing analysis tool to select a partial library that is most relevant to the analysis queries in the application code. The selected partial library plus the application is given as input to the existing static analysis tool, with the remaining library pointers treated as the bottom element in the abstract domain. This achieves a significant speedup over a whole-program analysis, at the cost of a few lost errors, and with no loss in precision. We instantiate and run experiments on QueryMax for a cast-check analysis and a null-pointer analysis. For a particular configuration, QueryMax enables these two analyses to achieve, relative to a whole-program analysis, an average recall of 87%, a precision of 100% and a geometric mean speedup of 10x.more » « less
-
The compilation scheme for Volatile accesses in the OpenJDK 9 HotSpot Java Virtual Machine has a major problem that persists despite a recent bug report and a long discussion. One of the suggested fixes is to let Java compile Volatile accesses in the same way as C/C++11. However, we show that this approach is invalid for Java. Indeed, we show a set of optimizations that is valid for C/C++11 but invalid for Java, while the compilation scheme is similar. We prove the correctness of the compilation scheme to Power and x86 and a suite of valid optimizations in Java. Our proofs are based on a language model that we validate by proving key properties such as the DRF-SC theorem and by running litmus tests via our implementation of Java in Herd7.more » « less
-
Researchers have reported that static analysis tools rarely achieve a false-positive rate that would make them attractive to developers. We overcome this problem by a technique that leads to reporting fewer bugs but also much fewer false positives. Our technique prunes the static call graph that sits at the core of many static analyses. Specifically, static call-graph construction proceeds as usual, after which a call-graph pruner removes many false-positive edges but few true edges. The challenge is to strike a balance between being aggressive in removing false-positive edges but not so aggressive that no true edges remain. We achieve this goal by automatically producing a call-graph pruner through an automatic, ahead-of-time learning process. We added such a call-graph pruner to a software tool for null-pointer analysis and found that the false-positive rate decreased from 73% to 23%. This improvement makes the tool more useful to developers.more » « less
-
null (Ed.)Reducing a failure-inducing input to a smaller one is challenging for input with internal dependencies because most sub-inputs are invalid. Kalhauge and Palsberg made progress on this problem by mapping the task to a reduction problem for dependency graphs that avoids invalid inputs entirely. Their tool J-Reduce efficiently reduces Java bytecode to 24 percent of its original size, which made it the most effective tool until now. However, the output from their tool is often too large to be helpful in a bug report. In this paper, we show that more fine-grained modeling of dependencies leads to much more reduction. Specifically, we use propositional logic for specifying dependencies and we show how this works for Java bytecode. Once we have a propositional formula that specifies all valid sub-inputs, we run an algorithm that finds a small, valid, failure-inducing input. Our algorithm interleaves runs of the buggy program and calls to a procedure that finds a minimal satisfying assignment. Our experiments show that we can reduce Java bytecode to 4.6 percent of its original size, which is 5.3 times better than the 24.3 percent achieved by J-Reduce. The much smaller output is more suitable for bug reports.more » « less
An official website of the United States government

Full Text Available